دانلود کتاب Principles of Foundation Engineering 10th Edition

خرید ایبوک Principles of Foundation Engineering 10th Edition

برای دانلود ایبوک Principles of Foundation Engineering نسخه دهم و خرید کتاب اصول مهندسی مهندسی پی Braja نسخه دهم بر روی کلید خرید در انتهای صفحه کلیک کنید. پس از اتصال به درگاه پرداخت هزینه و تکمیل مراحل خرید، لینک دانلود کتاب ایمیل می شود.این ایبوک در فرمت PDF اورجینال و به زبان انگلیسی ارسال می شود.نسخه الکترونیکی کتاب قابلیت کپی برداری copy و Paste دارد.

در صورتی که نیاز به پی دی اف هر کتابی از انتشارات cengage دارید با گیگاپیپر مکاتبه کنید.
دانلود ایبوک Principles of Foundation Engineering نسخه دهم و خرید کتاب اصول مهندسی مهندسی پی Braja نسخه دهم

Principles of Foundation Engineering 10th Edition

by Braja M. Das (Author)

Send email to download :ایمیل گیگاپیپر دانلود کتاب مقاله پایان نامه

Price : 20$

https://faculty.cengage.com/titles/9780357684658?q=pricing-options

دانلود رایگان کتاب Formulation of Monoclonal Antibody Therapies: From Lab to Market

Master the core concepts and applications of foundation analysis and design with Das� best-selling PRINCIPLES OF FOUNDATION ENGINEERING, 10th Edition. A must-have resource in your engineering education, this edition is specifically written for undergraduate civil engineering students like you to provide an ideal balance between today’s most current research and practical field applications. Dr. Das, a renowned author in the field of geotechnical engineering, emphasizes how to develop the critical judgment you need to properly apply theories and analysis to the evaluation of soils and foundation design. A new chapter discusses the uplift capacity of shallow foundations and helical anchors. This edition provides more worked-out examples and figures than any other book of its kind, along with new learning objectives and illustrative photos that help you focus on the skills most critical for success as a civil engineer. WebAssign’s digital resources are also available for review and reinforcement.

دانلود ایبوک اصول مهندسی ژئوتکنیک: مهندسی پی

بر مفاهیم اصلی و کاربردهای تجزیه و تحلیل و طراحی فونداسیون با پرفروش‌ترین اصول مهندسی پایه، ویرایش دهم داس تسلط پیدا کنید. یک منبع ضروری در تحصیلات مهندسی شما، این نسخه به طور خاص برای دانشجویان مهندسی عمران در مقطع کارشناسی مانند شما نوشته شده است تا تعادل ایده آلی بین جدیدترین تحقیقات امروزی و کاربردهای میدانی عملی فراهم کند. دکتر داس، نویسنده مشهور در زمینه مهندسی ژئوتکنیک، بر چگونگی توسعه قضاوت انتقادی مورد نیاز برای اعمال صحیح تئوری ها و تجزیه و تحلیل در ارزیابی خاک ها و طراحی پی تاکید می کند. فصل جدید ظرفیت بالا بردن پایه های کم عمق و لنگرهای مارپیچ را مورد بحث قرار می دهد. این نسخه بیش از هر کتاب دیگری در نوع خود نمونه ها و ارقام کار شده را به همراه اهداف آموزشی جدید و عکس های گویا ارائه می دهد که به شما کمک می کند تا بر مهارت های مهم برای موفقیت به عنوان یک مهندس عمران تمرکز کنید. منابع دیجیتال WebAssign نیز برای بررسی و تقویت در دسترس هستند.

Table of Contents

COVER PAGE
TITLE PAGE
COPYRIGHT PAGE
DEDICATION
PREFACE
ACKNOWLEDGMENTS
PREFACE TO THE SI EDITION
ABOUT THE AUTHORS
GETTING STARTED WITH MINDTAP
Introduction to Foundation Engineering
Chapter 1. Introduction
1.1. Geotechnical Engineering
1.2. Foundation Engineering
1.3. Soil Exploration
1.4. Ground Improvement
1.5. Solution Methods
1.6. Numerical Modeling
1.7. Empiricism
1.8. Literature
References
Part 1. Geotechnical Properties and Soil Exploration
Chapter 2. Geotechnical Properties of Soil
2.1. Introduction
2.2. Grain-Size Distribution
2.3. Size Limits for Soil
2.4. Weight–Volume Relationships
2.5. Relative Density
2.6. Atterberg Limits
2.7. Liquidity Index
2.8. Activity
2.9. Soil Classification Systems
2.10. Hydraulic Conductivity of Soil
2.11. Steady-State Seepage
2.12. Effective Stress
2.13. Consolidation
2.14. Calculation of Primary Consolidation Settlement
2.15. Time Rate of Consolidation
2.16. Range of Coefficient of Consolidation, cv
2.17. Degree of Consolidation Under Ramp Loading
2.18. Shear Strength
2.19. Unconfined Compression Test
2.20. Comments on Friction Angle, ϕ′
2.21. Correlations for Undrained Shear Strength, cu
2.22. Sensitivity
2.23. Summary
Problems
References
Chapter 3. Natural Soil Deposits and Subsoil Exploration
3.1. Introduction
3.2. Natural Soil Deposits: Soil Origin
3.3. Natural Soil Deposits: Residual Soil
3.4. Natural Soil Deposits: Gravity-Transported Soil
3.5. Natural Soil Deposits: Alluvial Deposits
3.6. Natural Soil Deposits: Lacustrine Deposits
3.7. Natural Soil Deposits: Glacial Deposits
3.8. Natural Soil Deposits: Aeolian Soil Deposits
3.9. Natural Soil Deposits: Organic Soil
3.10. Natural Soil Deposits: Some Local Terms for Soil
3.11. Subsurface Exploration: Purpose of Subsurface Exploration
3.12. Subsurface Exploration: Subsurface Exploration Program
3.13. Subsurface Exploration: Exploratory Borings in the Field
3.14. Subsurface Exploration: Procedures for Sampling Soil
3.15. Subsurface Exploration: Split-Spoon Sampling and Standard Penetration Test
3.16. Subsurface Exploration: Sampling with a Scraper Bucket
3.17. Subsurface Exploration: Sampling with a Thin-Walled Tube
3.18. Subsurface Exploration: Sampling with a Piston Sampler
3.19. Subsurface Exploration: Observation of Water Tables
3.20. Subsurface Exploration: Vane Shear Test
3.21. Subsurface Exploration: Cone Penetration Test
3.22. Subsurface Exploration: Pressuremeter Test (PMT)
3.23. Subsurface Exploration: Dilatometer Test
3.24. Subsurface Exploration: Iowa Borehole Shear Test
3.25. Subsurface Exploration: K0 Stepped-Blade Test
3.26. Subsurface Exploration: Coring of Rocks
3.27. Preparation of Boring Logs
3.28. Geophysical Exploration
3.29. Subsoil Exploration Report
3.30. Summary
Problems
References
Part 2. Soil Improvement
Chapter 4. Soil Improvement and Ground Modification
4.1. Introduction
4.2. General Principles of Compaction
4.3. Empirical Relationships for Compaction
4.4. Field Compaction
4.5. Compaction Control for Clay Hydraulic Barriers
4.6. Vibroflotation
4.7. Blasting
4.8. Precompression
4.9. Sand Drains
4.10. Prefabricated Vertical Drains
4.11. Lime Stabilization
4.12. Cement Stabilization
4.13. Fly-Ash Stabilization
4.14. Stone Columns
4.15. Sand Compaction Piles
4.16. Dynamic Compaction
4.17. Jet Grouting
4.18. Deep Mixing
4.19. Summary
Problems
References
Part 3. Foundation Analysis
Chapter 5. Shallow Foundations: Ultimate Bearing Capacity
5.1. Introduction
5.2. General Concept
5.3. Terzaghi’s Bearing Capacity Theory
5.4. Factor of Safety
5.5. Modification of Bearing Capacity Equations for Water Table
5.6. The General Bearing Capacity Equation
5.7. Other Solutions for Bearing Capacity, Shape, Depth, and Inclination Factors
5.8. Case Studies on Ultimate Bearing Capacity
5.9. Effect of Soil Compressibility
5.10. Scale Effects on Ultimate Bearing Capacity
5.11. Eccentrically Loaded Foundations
5.12. Ultimate Bearing Capacity Under Eccentric Loading—One-Way Eccentricity
5.13. Bearing Capacity—Two-Way Eccentricity
5.14. Bearing Capacity of a Continuous Foundation Subjected to Eccentrically Inclined Loading
5.15. Summary
Problems
References
Chapter 6. Ultimate Bearing Capacity of Shallow Foundations: Special Cases
6.1. Introduction
6.2. Bearing Capacity of a Foundation on Anisotropic Sand
6.3. Bearing Capacity of Inclined Continuous Foundation Subjected to Normal Load
6.4. Foundation Supported by a Soil with a Rigid Base at Shallow Depth
6.5. Foundations on Layered Clay
6.6. Bearing Capacity of Layered Soil: Stronger Soil Underlain by Weaker Soil (c′-ϕ′ Soil)
6.7. Bearing Capacity of Layered Soil: Weaker Soil Underlain by Stronger Soil
6.8. Continuous Foundation on Weak Clay with a Granular Trench
6.9. Closely Spaced Foundations—Effect on Ultimate Bearing Capacity
6.10. Bearing Capacity of Foundations on Top of a Slope
6.11. Bearing Capacity of Foundations on a Slope
6.12. Seismic Bearing Capacity and Settlement in Granular Soil
6.13. Foundations on Rock
6.14. Ultimate Bearing Capacity of Wedge-Shaped Foundations
6.15. Summary
Problems
References
Chapter 7. Vertical Stress Increase in Soil
7.1. Introduction
7.2. Stress Due to a Concentrated Load
7.3. Stress Due to a Circularly Loaded Area
7.4. Stress Due to a Line Load
7.5. Stress Below a Vertical Strip Load of Finite Width and Infinite Length
7.6. Stress Below a Horizontal Strip Load of Finite Width and Infinite Length
7.7. Symmetrical Vertical Triangular Strip Load on the Surface
7.8. Vertical Stress Increase Below a Flexible Circular Area—Parabolic and Conical Loading
7.9. Stress Below a Rectangular Area
7.10. Average Vertical Stress Increase Due to a Rectangularly Loaded Area
7.11. Average Vertical Stress Increase Below the Center of a Circularly Loaded Area
7.12. Stress Increase Under an Embankment
7.13. Westergaard’s Solution for Vertical Stress Due to a Point Load
7.14. Stress Distribution for Westergaard Material
7.15. Summary
Problems
References
Chapter 8. Settlement of Shallow Foundations
8.1. Introduction
8.2. Elastic Settlement of Shallow Foundation on Saturated Clay (μs=0.5)
8.3. Elastic Settlement in Granular Soil: Settlement Based on the Theory of Elasticity
8.4. Elastic Settlement in Granular Soil: Improved Equation for Elastic Settlement
8.5. Elastic Settlement in Granular Soil: Settlement of Sandy Soil: Use of Strain Influence Factor
8.6. Elastic Settlement in Granular Soil: Settlement of Foundation on Sand Based on Standard Penetration Resistance
8.7. Elastic Settlement in Granular Soil: Settlement Based on Pressuremeter Test (PMT)
8.8. Elastic Settlement in Granular Soil: Settlement Estimation Using the L1–L2 Method
8.9. Consolidation Settlement: Primary Consolidation Settlement Relationships
8.10. Consolidation Settlement: Three-Dimensional Effect on Primary Consolidation Settlement
8.11. Consolidation Settlement: Settlement Due to Secondary Consolidation
8.12. Consolidation Settlement: Field Load Test
8.13. Consolidation Settlement: Presumptive Bearing Capacity
8.14. Consolidation Settlement: Tolerable Settlement of Buildings
8.15. Consolidation Settlement: Improvement of Soil for Shallow Foundation Construction
8.16. Summary
Problems
References
Chapter 9. Mat Foundations
9.1. Introduction
9.2. Combined Footings
9.3. Common Types of Mat Foundations
9.4. Bearing Capacity of Mat Foundations
9.5. Differential Settlement of Mats
9.6. Field Settlement Observations for Mat Foundations
9.7. Compensated Foundation
9.8. Structural Design of Mat Foundations
9.9. Summary
Problems
References
Chapter 10. Uplift Capacity of Shallow Foundations and Helical Anchors
10.1. Introduction
10.2. Shallow Foundations: Foundations on Granular Soil (c′=0)
10.3. Shallow Foundations: Foundations in Cohesive Soil (ϕ=0, c=cu)
10.4. Helical Anchors: General Dimensions of a Helical Anchor
10.5. Helical Anchors: Geometrical Parameters, Failure Mode in Sand, and Ultimate Load Determination
10.6. Helical Anchors: Subsurface Exploration: Deep Helical Anchors in Sand
10.7. Helical Anchors: Helical Anchors in Clay (ϕ=0⁢Condition)
10.8. Summary
Problems
References
Chapter 11. Pile Foundations
11.1. Introduction
11.2. Pile Materials
11.3. Continuous Flight Auger (CFA) Piles
11.4. Estimating Pile Length
11.5. Installation of Piles
11.6. Load Transfer Mechanism
11.7. Equations for Estimating Pile Capacity
11.8. Meyerhof’s Method for Estimating Qp
11.9. Janbu’s Method—Estimation of Qp
11.10. Vesic’s Method for Estimating Qp
11.11. Coyle and Castello’s Method for Estimating Qp in Sand
11.12. Correlations for Calculating Qp with SPT and CPT Results in Granular Soil
11.13. Frictional Resistance (Qs) in Sand
11.14. Comparison of Theory with Field Load Test Results (Granular Soil)
11.15. Frictional (Skin) Resistance in Clay
11.16. Ultimate Capacity of Continuous Flight Auger Pile
11.17. Point Bearing Capacity of Piles Resting on Rock
11.18. Pile Load Tests
11.19. Elastic Settlement of Piles
11.20. Laterally Loaded Piles
11.21. Pile-Driving Formulas
11.22. Pile Capacity for Vibration-Driven Piles
11.22. Wave Equation Analysis
11.24. Negative Skin Friction
11.25. Group Efficiency
11.26. Ultimate Capacity of Group Piles in Saturated Clay
11.27. Elastic Settlement of Group Piles
11.28. Consolidation Settlement of Group Piles
11.28. Piles in Rock
11.29. Summary
Problems
References
Chapter 12. Drilled-Shaft Foundations
12.1. Introduction
12.2. Types of Drilled Shafts
12.3. Construction Procedures
12.4. Other Design Considerations
12.5. Load Transfer Mechanism
12.6. Estimation of Load-Bearing Capacity
12.7. Load-Bearing Capacity in Granular Soil
12.8. Load-Bearing Capacity in Granular Soil Based on Settlement
12.9. Load-Bearing Capacity in Clay
12.10. Load-Bearing Capacity in Clay Based on Settlement
12.11. Settlement of Drilled Shafts at Working Load
12.12. Lateral Load-Carrying Capacity—Characteristic Load and Moment Method
12.13. Drilled Shafts Extending into Rock
12.14. Summary
Problems
References
Chapter 13. Foundations on Difficult Soil
13.1. Introduction
13.2. Collapsible Soil: Definition and Types of Collapsible Soil
13.3. Collapsible Soil: Physical Parameters for Identification
13.4. Collapsible Soil: Procedure for Calculating Collapse Settlement
13.5. Collapsible Soil: Foundations in Soil Not Susceptible to Wetting
13.6. Collapsible Soil: Foundations in Soil Susceptible to Wetting
13.7. Expansive Soil: General Nature of Expansive Soil
13.8. Expansive Soil: Unrestrained Swell Test
13.9. Expansive Soil: Swelling Pressure Test
13.10. Expansive Soil: Classification of Expansive Soil on the Basis of Index Tests
13.11. Expansive Soil: Foundation Considerations for Expansive Soil
13.12. Expansive Soil: Construction on Expansive Soil
13.13. Sanitary Landfills: General Nature of Sanitary Landfills
13.14. Sanitary Landfills: Settlement of Sanitary Landfills
13.15. Summary
Problems
References
Part 4. Lateral Earth Pressure and Earth-Retaining Structures
Chapter 14. Lateral Earth Pressure
14.1. Introduction
14.2. Lateral Earth Pressure at Rest
14.3. Active Pressure: Rankine Active Earth Pressure
14.4. A Generalized Case for Rankine Active Pressure—Granular Backfill
14.5. Rankine Active Pressure with Vertical Wall Backface and Inclined c′-ϕ′ Soil Backfill
14.6. Coulomb’s Active Earth Pressure
14.7. Active Earth Pressure for Translation of Retaining Wall—Granular Backfill
14.8. Lateral Earth Pressure Due to Surcharge
14.9. Active Earth Pressure for Earthquake Conditions—Granular Backfill
14.10. Active Earth Pressure for Earthquake Condition (Vertical Backface of Wall and c′-ϕ′ Backfill)
14.11. Passive Pressure: Rankine Passive Earth Pressure
14.12. A Generalized Case for Rankine Passive Pressure—Granular Backfill
14.13. Coulomb’s Passive Earth Pressure
14.14. Comments on the Failure Surface Assumption for Coulomb’s Pressure Calculations
14.15. Caquot and Kerisel Solution for Passive Earth Pressure (Granular Backfill)
14.16. Solution for Passive Earth Pressure by Shields and Tolunay (1973) (Granular Backfill)
14.17. Summary
Problems
References
Chapter 15. Retaining Walls
15.1. Introduction
15.2. Gravity and Cantilever Walls: Proportioning Retaining Walls
15.3. Gravity and Cantilever Walls: Application of Lateral Earth Pressure Theories to Design
15.4. Gravity and Cantilever Walls: Equivalent Fluid Method for Determination of Earth Pressure
15.5. Gravity and Cantilever Walls: Stability of Retaining Walls
15.6. Gravity and Cantilever Walls: Check for Overturning
15.7. Gravity and Cantilever Walls: Check for Sliding Along the Base
15.8. Gravity and Cantilever Walls: Check for Bearing Capacity Failure
15.9. Gravity and Cantilever Walls: Construction Joints and Drainage from Backfill
15.10. Gravity and Cantilever Walls: Comments on Design of Retaining Walls
15.11. Gravity and Cantilever Walls: Gravity Retaining-Wall Design for Earthquake Conditions
Mechanically Stabilized Retaining Walls
15.12. Mechanically Stabilized Retaining Walls: Soil Reinforcement
15.13. Mechanically Stabilized Retaining Walls: Considerations in Soil Reinforcement
15.14. Mechanically Stabilized Retaining Walls: General Design Considerations
15.15. Mechanically Stabilized Retaining Walls: Retaining Walls with Metallic Strip Reinforcement
15.16. Mechanically Stabilized Retaining Walls: Step-by-Step-Design Procedure Using Metallic Strip Reinforcement
15.17. Mechanically Stabilized Retaining Walls: Retaining Walls with Geotextile Reinforcement
15.18. Mechanically Stabilized Retaining Walls: Retaining Walls with Geogrid Reinforcement—General
15.19. Mechanically Stabilized Retaining Walls: Design Procedure for Geogrid-Reinforced Retaining Wall
15.20. Summary
Problems
References
Chapter 16. Sheet-Pile Walls
16.1. Introduction
16.2. Construction Methods
16.3. Cantilever Sheet-Pile Walls
16.4. Cantilever Sheet Piling Penetrating Sandy Soil
16.5. Special Cases for Cantilever Walls Penetrating a Sandy Soil
16.6. Cantilever Sheet Piling Penetrating Clay
16.7. Special Cases for Cantilever Walls Penetrating Clay
16.8. Anchored Sheet-Pile Walls
16.9. Free Earth Support Method for Penetration of Sandy Soil
16.10. Design Charts for Free Earth Support Method (Penetration into Sandy Soil)
16.11. Moment Reduction for Anchored Sheet-Pile Walls Penetrating into Sand
16.12. Computational Pressure Diagram Method for Penetration into Sandy Soil
16.13. Field Observations for Anchor Sheet-Pile Walls
16.14. Free Earth Support Method for Penetration of Clay
16.15. Anchors
16.16. Holding Capacity of Anchor Plates in Sand
16.17. Holding Capacity of Anchor Plates in Clay (ϕ=0 Condition)
16.18. Ultimate Resistance of Tiebacks
16.19. Summary
Problems
References
Chapter 17. Braced Cuts
Learning Objectives
17.1. Introduction
17.2. Braced-Cut Analysis Based on General Wedge Theory
17.3. Pressure Envelope for Braced-Cut Design
17.4. Pressure Envelope for Cuts in Layered Soil
17.5. Tschebotarioff’s Pressure Envelopes
17.6. Design of Various Components of a Braced Cut
17.7. Case Studies of Braced Cuts
17.8. Bottom Heave of a Cut in Clay
17.9. Stability of the Bottom of a Cut in Sand
17.10. Lateral Yielding of Sheet Piles and Ground Settlement
17.11. Summary
Problems
References
Appendices: Conversion Factors
Appendices: Conversion Factors
Conversion Factors from English to SI Units
Conversion Factors from SI to English Units

دکمه بازگشت به بالا