دانلود کتاب Antenna Theory: Analysis and Design4th Edition
این کتاب در آرشیو موجود است. جهت دانلود کتاب Antenna Theory: Analysis and Design 4th Edition با ما مکاتبه کنبد. برای دانلود کتاب تئوری آنتن: تجزیه و تحلیل و طراحی با ما مکاتبه کنید. ایبوک 1118642066در آرشیو گیگاپیپر موجود است.
خرید کتاب Antenna Theory: Analysis and Design 4th Edition
Antenna Theory: Analysis and Design 4th Edition by Constantine A. Balanis (Author)
درباره ایبوک Antenna Theory: Analysis and Design 4th Edition
Updated with color and gray scale illustrations, a companion website housing supplementary material, and new sections covering recent developments in antenna analysis and design
This book introduces the fundamental principles of antenna theory and explains how to apply them to the analysis, design, and measurements of antennas. Due to the variety of methods of analysis and design, and the different antenna structures available, the applications covered in this book are made to some of the most basic and practical antenna configurations. Among these antenna configurations are linear dipoles; loops; arrays; broadband antennas; aperture antennas; horns; microstrip antennas; and reflector antennas. The text contains sufficient mathematical detail to enable undergraduate and beginning graduate students in electrical engineering and physics to follow the flow of analysis and design. Readers should have a basic knowledge of undergraduate electromagnetic theory, including Maxwell’s equations and the wave equation, introductory physics, and differential and integral calculus.
Presents new sections on flexible and conformal bowtie, Vivaldi antenna, antenna miniaturization, antennas for mobile communications, dielectric resonator antennas, and scale modeling Provides color and gray scale figures and illustrations to better depict antenna radiation characteristics Includes access to a companion website housing MATLAB programs, Java-based applets and animations, Power Point notes, Java-based interactive questionnaires and a solutions manual for instructors Introduces over 100 additional end-of-chapter problems
Antenna Theory: Analysis and Design, Fourth Edition is designed to meet the needs of senior undergraduate and beginning graduate level students in electrical engineering and physics, as well as practicing engineers and antenna designers.
Constantine A. Balanis received his BSEE degree from the Virginia Tech in 1964, his MEE degree from the University of Virginia in 1966, his PhD in Electrical Engineering from The Ohio State University in 1969, and an Honorary Doctorate from the Aristotle University of Thessaloniki in 2004. From 1964 to 1970, he was with the NASA Langley Research Center in Hampton, VA, and from 1970 to 1983, he was with the Department of Electrical Engineering of West Virginia University. In 1983 he joined Arizona State University and is now Regents’ Professor of Electrical Engineering. Dr. Balanis is also a life fellow of the IEEE.
فهرست مطالب ایبوک Antenna Theory: Analysis and Design 4th Edition
فهرست مطالب ایبوک تئوری آنتن : تجزیه و تحلیل و طراحی در ادامه آورده شده است.
Table Of Contents Cover Title Page Copyright Contents Preface About the Companion Website Chapter 1 Antennas 1.1 Introduction 1.2 Types of Antennas 1.2.1 Wire Antennas 1.2.2 Aperture Antennas 1.2.3 Microstrip Antennas 1.2.4 Array Antennas 1.2.5 Reflector Antennas 1.2.6 Lens Antennas 1.3 Radiation Mechanism 1.3.1 Single Wire 1.3.2 Two-Wires 1.3.3 Dipole 1.3.4 Computer Animation-Visualization of Radiation Problems 1.4 Current Distribution on a Thin Wire Antenna 1.5 Historical Advancement 1.5.1 Antenna Elements 1.5.2 Methods of Analysis 1.5.3 Some Future Challenges 1.6 Multimedia References Chapter 2 Fundamental Parameters and Figures-of-Merit of Antennas 2.1 Introduction 2.2 Radiation Pattern 2.2.1 Radiation Pattern Lobes 2.2.2 Isotropic, Directional, and Omnidirectional Patterns 2.2.3 Principal Patterns 2.2.4 Field Regions 2.2.5 Radian and Steradian 2.3 Radiation Power Density 2.4 Radiation Intensity 2.5 Beamwidth 2.6 Directivity 2.6.1 Directional Patterns 2.6.2 Omnidirectional Patterns 2.7 Numerical Techniques 2.8 Antenna Efficiency 2.9 Gain, Realized Gain 2.10 Beam Efficiency 2.11 Bandwidth 2.12 Polarization 2.12.1 Linear, Circular, and Elliptical Polarizations 2.12.2 Polarization Loss Factor and Efficiency 2.13 Input Impedance 2.14 Antenna Radiation Efficiency 2.15 Antenna Vector Effective Length and Equivalent Areas 2.15.1 Vector Effective Length 2.15.2 Antenna Equivalent Areas 2.16 Maximum Directivity and Maximum Effective Area 2.17 Friis Transmission Equation and Radar Range Equation 2.17.1 Friis Transmission Equation 2.17.2 Radar Range Equation 2.17.3 Antenna Radar Cross Section 2.18 Antenna Temperature 2.19 Multimedia References Problems Chapter 3 Radiation Integrals and Auxiliary Potential Functions 3.1 Introduction 3.2 The Vector Potential A for an Electric Current Source J 3.3 The Vector Potential F for A Magnetic Current Source M 3.4 Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources 3.5 Solution of the Inhomogeneous Vector Potential Wave Equation 3.6 Far-Field Radiation 3.7 Duality Theorem 3.8 Reciprocity and Reaction Theorems 3.8.1 Reciprocity for Two Antennas 3.8.2 Reciprocity for Antenna Radiation Patterns References Problems Chapter 4 Linear Wire Antennas 4.1 Introduction 4.2 Infinitesimal Dipole 4.2.1 Radiated Fields 4.2.2 Power Density and Radiation Resistance 4.2.3 Radian Distance and Radian Sphere 4.2.4 Near-Field (kr ≪ 1) Region 4.2.5 Intermediate-Field (kr > 1) Region 4.2.6 Far-Field (kr ≫ 1) Region 4.2.7 Directivity 4.3 Small Dipole 4.4 Region Separation 4.4.1 Far-Field (Fraunhofer) Region 4.4.2 Radiating Near-Field (Fresnel) Region 4.4.3 Reactive Near-Field Region 4.5 Finite Length Dipole 4.5.1 Current Distribution 4.5.2 Radiated Fields: Element Factor, Space Factor, and Pattern Multiplication 4.5.3 Power Density, Radiation Intensity, and Radiation Resistance 4.5.4 Directivity 4.5.5 Input Resistance 4.5.6 Finite Feed Gap 4.6 Half-Wavelength Dipole 4.7 Linear Elements Near or On Infinite Perfect Electric Conductors (PEC), Perfect Magnetic Conductors (PMC) and Electromagnetic Band-Gap (EBG) Surfaces 4.7.1 Ground Planes: Electric and Magnetic 4.7.2 Image Theory 4.7.3 Vertical Electric Dipole 4.7.4 Approximate Formulas for Rapid Calculations and Design 4.7.5 Mobile Communication Devices and Antennas for Mobile Communication Systems 4.7.6 Horizontal Electric Dipole 4.8 Ground Effects 4.8.1 Vertical Electric Dipole 4.8.2 Horizontal Electric Dipole 4.8.3 PEC, PMC and EBG Surfaces 4.8.4 Earth Curvature 4.9 Computer Codes 4.10 Multimedia References Problems Chapter 5 Loop Antennas 5.1 Introduction 5.2 Small Circular Loop 5.2.1 Radiated Fields 5.2.2 Small Loop and Infinitesimal Magnetic Dipole 5.2.3 Power Density and Radiation Resistance 5.2.4 Near-Field (kr ≪ 1) Region 5.2.5 Far-Field (kr ≫ 1) Region 5.2.6 Radiation Intensity and Directivity 5.2.7 Equivalent Circuit 5.3 Circular Loop of Constant Current 5.3.1 Radiated Fields 5.3.2 Power Density, Radiation Intensity, Radiation Resistance, and Directivity 5.4 Circular Loop with Nonuniform Current 5.4.1 Arrays 5.4.2 Design Procedure 5.5 Ground and Earth Curvature Effects for Circular Loops 5.6 Polygonal Loop Antennas 5.7 Ferrite Loop 5.7.1 Radiation Resistance 5.7.2 Ferrite-Loaded Receiving Loop 5.8 Mobile Communication Systems Applications 5.9 Multimedia References Problems Chapter 6 Arrays: Linear, Planar, and Circular 6.1 Introduction 6.2 Two-Element Array 6.3 N-Element Linear Array: Uniform Amplitude and Spacing 6.3.1 Broadside Array 6.3.2 Ordinary End-Fire Array 6.3.3 Phased (Scanning) Array 6.3.4 Hansen-Woodyard End-Fire Array 6.4 N-Element Linear Array: Directivity 6.4.1 Broadside Array 6.4.2 Ordinary End-Fire Array 6.4.3 Hansen-Woodyard End-Fire Array 6.5 Design Procedure 6.6 N-Element Linear Array: Three-Dimensional Characteristics 6.6.1 N-Elements Along Z-Axis 6.6.2 N-Elements Along X- or Y-Axis 6.7 Rectangular-to-Polar Graphical Solution 6.8 N-Element Linear Array: Uniform Spacing, Nonuniform Amplitude 6.8.1 Array Factor 6.8.2 Binomial Array 6.8.3 Dolph-Tschebyscheff Array: Broadside 6.8.4 Tschebysheff Design: Scanning 6.9 Superdirectivity 6.9.1 Efficiency and Directivity 6.9.2 Designs with Constraints 6.10 Planar Array 6.10.1 Array Factor 6.10.2 Beamwidth 6.10.3 Directivity 6.11 Design Considerations 6.12 Circular Array 6.12.1 Array Factor 6.13 Multimedia References Problems Chapter 7 Antenna Synthesis and Continuous Sources 7.1 Introduction 7.2 Continuous Sources 7.2.1 Line-Source 7.2.2 Discretization of Continuous Sources 7.3 Schelkunoff Polynomial Method 7.4 Fourier Transform Method 7.4.1 Line-Source 7.4.2 Linear Array 7.5 Woodward-Lawson Method 7.5.1 Line-Source 7.5.2 Linear Array 7.6 Taylor Line-Source (Tschebyscheff-Error) 7.6.1 Design Procedure 7.7 Taylor Line-Source (One-Parameter) 7.8 Triangular, Cosine, and Cosine-Squared Amplitude Distributions 7.9 Line-Source Phase Distributions 7.10 Continuous Aperture Sources 7.10.1 Rectangular Aperture 7.10.2 Circular Aperture 7.11 Multimedia References Problems Chapter 8 Integral Equations, Moment Method, and Self and Mutual Impedances 8.1 Introduction 8.2 Integral Equation Method 8.2.1 Electrostatic Charge Distribution 8.2.2 Integral Equation 8.3 Finite Diameter Wires 8.3.1 Pocklington’s Integral Equation 8.3.2 Hallén’s Integral Equation 8.3.3 Source Modeling 8.4 Moment Method Solution 8.4.1 Basis (Expansion) Functions 8.4.2 Weighting (Testing) Functions 8.5 Self-Impedance 8.5.1 Integral Equation-Moment Method 8.5.2 Induced EMF Method 8.6 Mutual Impedance Between Linear Elements 8.6.1 Integral Equation-Moment Method 8.6.2 Induced EMF Method 8.7 Mutual Coupling in Arrays 8.7.1 Coupling in the Transmitting Mode 8.7.2 Coupling in the Receiving Mode 8.7.3 Mutual Coupling on Array Performance 8.7.4 Coupling in an Infinite Regular Array 8.7.5 Active Element Pattern in an Array 8.8 Multimedia References Problems Chapter 9 Broadband Dipoles and Matching Techniques 9.1 Introduction 9.2 Biconical Antenna 9.2.1 Radiated Fields 9.2.2 Input Impedance 9.3 Triangular Sheet, Flexible and Conformal Bow-Tie, and Wire Simulation 9.4 Vivaldi Antenna 9.5 Cylindrical Dipole 9.5.1 Bandwidth 9.5.2 Input Impedance 9.5.3 Resonance and Ground Plane Simulation 9.5.4 Radiation Patterns 9.5.5 Equivalent Radii 9.6 Folded Dipole 9.7 Discone and Conical Skirt Monopole 9.8 Matching Techniques 9.8.1 Stub-Matching 9.8.2 Quarter-Wavelength Transformer 9.8.3 Baluns and Transformers 9.9 Multimedia References Problems Chapter 10 Traveling Wave and Broadband Antennas 10.1 Introduction 10.2 Traveling Wave Antennas 10.2.1 Long Wire 10.2.2 V Antenna 10.2.3 Rhombic Antenna 10.3 Broadband Antennas 10.3.1 Helical Antenna 10.3.2 Electric-Magnetic Dipole 10.3.3 Yagi-Uda Array of Linear Elements 10.3.4 Yagi-Uda Array of Loops 10.4 Multimedia References Problems Chapter 11 Frequency Independent Antennas, Antenna Miniaturization, and Fractal Antennas 11.1 Introduction 11.2 Theory 11.3 Equiangular Spiral Antennas 11.3.1 Planar Spiral 11.3.2 Conical Spiral 11.4 Log-Periodic Antennas 11.4.1 Planar and Wire Surfaces 11.4.2 Dipole Array 11.4.3 Design of Dipole Array 11.5 Fundamental Limits of Electrically Small Antennas 11.6 Antenna Miniaturization 11.6.1 Monopole Antenna 11.6.2 Patch Antennas 11.6.3 Antenna Miniaturization Using Metamaterials 11.7 Fractal Antennas 11.8 Multimedia References Problems Chapter 12 Aperture Antennas 12.1 Introduction 12.2 Field Equivalence Principle: Huygens’ Principle 12.3 Radiation Equations Summary 12.4 Directivity 12.5 Rectangular Apertures 12.5.1 Uniform Distribution on an Infinite Ground Plane 12.5.2 Uniform Distribution in Space 12.5.3 TE10-Mode Distribution on an Infinite Ground Plane 12.5.4 Beam Efficiency 12.6 Circular Apertures 12.6.1 Uniform Distribution on an Infinite Ground Plane 12.6.2 TE11-Mode Distribution on an Infinite Ground Plane 12.6.3 Beam Efficiency 12.7 Design Considerations 12.7.1 Rectangular Aperture 12.7.2 Circular Aperture 12.8 Babinet’s Principle 12.9 Fourier Transforms in Aperture Antenna Theory 12.9.1 Fourier Transforms-Spectral Domain 12.9.2 Radiated Fields 12.9.3 Asymptotic Evaluation of Radiated Field 12.9.4 Dielectric-Covered Apertures 12.9.5 Aperture Admittance 12.10 Ground Plane Edge Effects: The Geometrical Theory of Diffraction 12.11 Multimedia References Problems Chapter 13 Horn Antennas 13.1 Introduction 13.2 E-Plane Sectoral Horn 13.2.1 Aperture Fields 13.2.2 Radiated Fields 13.2.3 Directivity 13.3 H-Plane Sectoral Horn 13.3.1 Aperture Fields 13.3.2 Radiated Fields 13.3.3 Directivity 13.4 Pyramidal Horn 13.4.1 Aperture Fields, Equivalent, and Radiated Fields 13.4.2 Directivity 13.4.3 Design Procedure 13.5 Conical Horn 13.6 Corrugated Horn 13.7 Aperture-Matched Horns 13.8 Multimode Horns 13.9 Dielectric-Loaded Horns 13.10 Phase Center 13.11 Multimedia References Problems Chapter 14 Microstrip and Mobile Communications Antennas 14.1 Introduction 14.1.1 Basic Characteristics 14.1.2 Feeding Methods 14.1.3 Methods of Analysis 14.2 Rectangular Patch 14.2.1 Transmission-Line Model 14.2.2 Cavity Model 14.2.3 Directivity 14.3 Circular Patch 14.3.1 Electric and Magnetic Fields—TMzmnp 14.3.2 Resonant Frequencies 14.3.3 Design 14.3.4 Equivalent Current Densities and Fields Radiated 14.3.5 Conductance and Directivity 14.3.6 Resonant Input Resistance 14.4 Quality Factor, Bandwidth, and Efficiency 14.5 Input Impedance 14.6 Coupling 14.7 Circular Polarization 14.8 Arrays and Feed Networks 14.9 Antennas for Mobile Communications 14.9.1 Planar Inverted-F Antenna (PIFA) 14.9.2 Slot Antenna 14.9.3 Inverted-F Antenna (IFA) 14.9.4 Multiband Antennas for Mobile Units 14.10 Dielectric Resonator Antennas 14.10.1 Basic DRA Geometries 14.10.2 Methods of Analysis and Design 14.10.3 Cavity Model Resonant Frequencies (TE and TM Modes) 14.10.4 Hybrid Modes: Resonant Frequencies and Quality Factors 14.10.5 Radiated Fields 14.11 Multimedia References Problems Chapter 15 Reflector Antennas 15.1 Introduction 15.2 Plane Reflector 15.3 Corner Reflector 15.3.1 90◦ Corner Reflector 15.3.2 Other Corner Reflectors 15.4 Parabolic Reflector 15.4.1 Front-Fed Parabolic Reflector 15.4.2 Cassegrain Reflectors 15.5 Spherical Reflector 15.6 Multimedia References Problems Chapter 16 Smart Antennas 16.1 Introduction 16.2 Smart-Antenna Analogy 16.3 Cellular Radio Systems Evolution 16.3.1 Omnidirectional Systems 16.3.2 Smart-Antenna Systems 16.4 Signal Propagation 16.5 Smart Antennas’ Benefits 16.6 Smart Antennas’ Drawbacks 16.7 Antenna 16.7.1 Array Design 16.7.2 Linear Array 16.7.3 Planar Array 16.8 Antenna Beamforming 16.8.1 Overview of Direction-Of-Arrival (DOA) Algorithms 16.8.2 Adaptive Beamforming 16.8.3 Mutual Coupling 16.8.4 Optimal Beamforming Techniques 16.9 Mobile Ad hoc Networks (MANETs) 16.9.1 Overview of Mobile Ad hoc NETworks (MANETs) 16.9.2 MANETs Employing Smart-Antenna Systems 16.10 Smart-Antenna System Design, Simulation, and Results 16.10.1 Design Process 16.10.2 Single Element—Microstrip Patch Design 16.10.3 Rectangular Patch 16.10.4 Array Design 16.10.5 4 × 4 Planar Array versus 8 × 8 Planar Array 16.10.6 Adaptive Beamforming 16.11 Beamforming, Diversity Combining, Rayleigh-Fading, and Trellis-Coded Modulation 16.12 Other Geometries 16.13 Multimedia References Problems Chapter 17 Antenna Measurements 17.1 Introduction 17.2 Antenna Ranges 17.2.1 Reflection Ranges 17.2.2 Free-Space Ranges 17.2.3 Compact Ranges 17.2.4 Near-Field/Far-Field Methods 17.3 Radiation Patterns 17.3.1 Instrumentation 17.3.2 Amplitude Pattern 17.3.3 Phase Measurements 17.4 Gain Measurements 17.4.1 Realized-Gain Measurements 17.4.2 Gain-Transfer (Gain-Comparison) Measurements 17.5 Directivity Measurements 17.6 Radiation Efficiency 17.7 Impedance Measurements 17.8 Current Measurements 17.9 Polarization Measurements 17.10 Scale Model Measurements 17.10.1 Gain (Amplitude) Measurements, Simulations and Comparisons 17.10.2 Echo Area (RCS) Measurements, Simulations and Comparisons References Appendix I: f(x) =sin(x)/x Appendix II: fN(x) =|sin(Nx)/N sin(x)| N = 1, 3, 5, 10, 20 Appendix III: Cosine and Sine Integrals Appendix IV: Fresnel Integrals Appendix V: Bessel Functions Appendix VI: Identities Appendix VII: Vector Analysis Appendix VIII: Method of Stationary Phase Appendix IX: Television, Radio, Telephone, and Radar Frequency Spectrums Index EULA
برای سفارش موارد زیر، با تلگرام و یا ایمیل ما مکاتبه کنید. دانلود مقاله ، خرید ایبوک ، دانلود استاندارد ، دریافت پایان نامه و خرید پسورد دانشگاهی خرید کتابهای آمازون، خرید اکانت iThenticate