دانلود کتاب خستگی فلزات Metal fatigue effects of small defects and nonmetallic inclusions 2nd 2019

خرید ایبوک Metal fatigue effects of small defects and nonmetallic inclusions 2nd 2019

برای دانلود کتاب Metal fatigue effects of small defects and nonmetallic inclusions نسخه دوم سال 2019 بر روی کلید خرید در انتهای صفحه کلیک کنید. پس از اتصال به درگاه پرداخت و تکمیل مراحل خرید، لینک دانلود کتاب اثرات خستگی فلزی نقص های کوچک و اجزاء غیر فلزی نسخه دوم ایمیل می شود.  این ایبوک در فرمت PDF اورجینال بلافاصله ارسال می شود.

در صورتی که نیاز به نسخه PDF هر کتابی از sciencedirect.com دارید با ما مکاتبه کنید.

 در صورتی که نیاز به دانلود هر کتابی از آمازون یا گوگل بوک دارید، فقط کافیست ادرس اینترنتی کتاب را از سایت www.amazon.com و یا books.google.com برای ما ارسال کنید (راههای ارتباطی در صفحه تماس با گیگاپیپر ). پس از بررسی، هزینه ان اعلام می شود. پس از واریز نسخه الکترونیکی ارسال می شود.

دانلود کتاب Metal fatigue effects of small defects and nonmetallic inclusions 2nd 2019 خرید هندبوک خستگی فلزات
دانلود کتاب Metal fatigue effects of small defects and nonmetallic inclusions 2nd 2019 خرید هندبوک خستگی فلزات
 Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions 2nd Edition, Kindle Edition
by Yukitaka Murakami (Author)

Paperback: 758 pages
Publisher: Academic Press; 2 edition (March 15, 2019)
Language: English
ISBN-10: 0128138769
ISBN-13: 978-0128138762

Download Please Contact Us :ایمیل گیگاپیپر دانلود کتاب مقاله پایان نامه
Price : 25$

https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5790784

https://www.sciencedirect.com/book/9780128138762/metal-fatigue

https://app.knovel.com/web/toc.v/cid:kpMFESDNIH/viewerType:toc//root_slug:metal-fatigue-effects?b-cat-name=Metals%20%26%20Metallurgy&b-cat-slug=metals-metallurgy&b-cat-id=207

لینک کتاب Metal fatigue از امازون

دانلود رایگان کتاب خستگی فلزات

برای اطمینان از کیفیت ایبوک اثرات خستگی فلزی نقص های کوچک و اجزاء غیر فلزی چاپ دوم، چند صفحه ابتدایی ان بصورت رایگان قرار داده شده است.

 

دانلود کتاب Metal fatigue effects of small defects and nonmetallic inclusions نسخه دوم 2019

Metal fatigue is an essential consideration for engineers and researchers looking at factors that cause metals to fail through stress, corrosion, or other processes. Predicting the influence of small defects and non-metallic inclusions on fatigue with any degree of accuracy is a particularly complex part of this.

Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions is the most trusted, detailed and comprehensive guide to this subject available. This expanded second edition introduces highly important emerging topics on metal fatigue, pointing the way for further research and innovation. The methodology is based on important and reliable results and may be usefully applied to other fatigue problems not directly treated in this book.

Demonstrates how to solve a wide range of specialized metal fatigue problems relating to small defects and non-metallic inclusions.
Provides a detailed introduction to fatigue mechanisms and stress concentration.
This edition is expanded to address even more topics, including low cycle fatigue, quality control of fatigue components, and more.

دانلود ایبوک اثرات خستگی فلزی نقص های کوچک و اجزاء غیر فلزی نسخه دوم

خستگی فلز برای مهندسین و محققان به عواملی که باعث از بین رفتن فلزات در اثر استرس ، خوردگی یا سایر فرایندها می شوند ، توجه اساسی دارد. پیش بینی تأثیر نواقص کوچک و اجزاء غیر فلزی بر خستگی با هر درجه صحت ، بخش خاصی از این مسئله است.

خستگی فلزی: اثرات نقص های کوچک و اجزاء غیر فلزی مطمئن ترین راهنمای دقیق و جامع در مورد این موضوع در دسترس است. این نسخه دوم گسترده مباحث ظهور بسیار مهمی در مورد خستگی فلزات را معرفی می کند ، و راه برای تحقیقات بیشتر و نوآوری را نشان می دهد. این روش مبتنی بر نتایج مهم و قابل اعتماد است و ممکن است برای سایر مشکلات خستگی که به طور مستقیم در این کتاب درمان نشده اند ، مفید واقع شود.

نشان می دهد که چگونه برای حل طیف گسترده ای از مشکلات تخصصی خستگی فلز مربوط به نقص کوچک و اجزاء غیر فلزی.
معرفی مفصلی در مورد مکانیسم های خستگی و غلظت استرس ارائه می دهد.
این نسخه برای پرداختن به مباحث حتی بیشتر ، از جمله خستگی در چرخه پایین ، کنترل کیفیت اجزای خستگی ، و موارد دیگر گسترش یافته است.

فهرست مطالب Metal fatigue effects of small defects and nonmetallic inclusions 2nd 2019

Front Cover
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
Copyright Page
Contents
Preface to the second edition
Preface to the first edition
1 Mechanism of fatigue in the absence of defects and inclusions
1.1 What is a fatigue limit?
1.1.1 Steels
1.1.2 Nonferrous metals
1.2 Relationship between static strength and fatigue strength
References
2 Stress concentration
2.1 Stress concentrations at holes and notches
2.2 Stress concentration at a crack
2.2.1 ‘area’ as a new geometrical parameter
2.2.2 Effective ‘area’ for particular cases
2.2.3 Cracks at stress concentrations
2.2.4 Interaction between two cracks
2.2.5 Interaction between a crack and a free surface
References
3 Notch effect and size effect
3.1 Notch effect
3.1.1 Effect of stress distribution at notch roots
3.1.2 Nonpropagating cracks at notch roots
3.2 Size effect
References
4 Effect of size and geometry of small defects on the fatigue limit
4.1 Introduction
4.2 Influence of extremely shallow notches or extremely short cracks
4.3 Fatigue tests on specimens containing small artificial defects
4.3.1 Effect of small artificial holes having the diameter d equal to the depth h
4.3.2 Effect of small artificial holes having different diameters and depths
4.4 Critical stress for fatigue crack initiation from a small crack
References
5 Effect of hardness HV on fatigue limits of materials containing defects, and fatigue limit prediction equations
5.1 Relationship between ΔKth and the geometrical parameter, area
5.2 Material parameter HV which controls fatigue limits
5.3 Application of the prediction equations
5.4 Limits of applicability of the prediction equations
5.5 The importance of the finding that specimens with an identical value of area for small holes or small cracks have ident…
5.6 Effect of orientation of small defects on the fatigue limit of steels
5.7 Fatigue limit prediction for a small defect at a notch root
5.8 Summary of the area parameter model
References
6 Effects of nonmetallic inclusions on fatigue strength
6.1 Review of existing studies and current problems
6.1.1 Correlation of material cleanliness and inclusion rating with fatigue strength
6.1.2 Size and location of inclusions and fatigue strength
6.1.3 Mechanical properties of microstructure and fatigue strength
6.1.4 Influence of nonmetallic inclusions related to the direction and mode of loading
6.1.5 Inclusion problem factors
6.2 Similarity of effects of nonmetallic inclusions and small defects and a unifying interpretation
6.3 Quantitative evaluation of effects of nonmetallic inclusions: strength prediction equations and their application
6.4 Causes of fatigue strength scatter for high-strength steels and scatter band prediction
6.5 Effect of mean stress
6.5.1 Quantitative evaluation of the mean stress effect on fatigue of materials containing small defects
6.5.2 Effects of both nonmetallic inclusions and mean stress in hard steels
6.5.3 Prediction of the lower bound of scatter and its application
6.6 Estimation of maximum inclusion size areamax by microscopic examination of a microstructure
6.6.1 Measurement of areamax for largest inclusions by optical microscopy
6.6.2 True and apparent maximum sizes of inclusions
6.6.3 Two-dimensional prediction method for largest inclusion size and evaluation by numerical simulation
References
7 Bearing steels
7.1 Influence of steel processing
7.2 Inclusions at fatigue fracture origins
7.3 Cleanliness and fatigue properties
7.3.1 Total oxygen (O) content
7.3.2 Ti content
7.3.3 Ca content
7.3.4 Sulphur (S) content
7.4 Fatigue strength of superclean bearing steels and the role of nonmetallic inclusions
7.5 Tessellated stresses associated with inclusions: thermal residual stresses around inclusions
7.6 What happens to the fatigue limit of bearing steels without nonmetallic inclusions?—Fatigue strength of electron beam r…
7.6.1 Material and experimental procedure
7.6.2 Inclusion rating based on the statistics of extremes
7.6.3 Fatigue test results
7.6.4 The true character of small inhomogeneities at fracture origins
References
8 Spring steels
8.1 Spring steels (SUP12) for automotive components
8.2 Explicit analysis of nonmetallic inclusions, shot peening, decarburised layers, surface roughness, and corrosion pits i…
8.2.1 Materials and experimental procedure
8.2.2 Interaction of factors influencing fatigue strength
8.2.2.1 Effect of shot peening
8.2.2.2 Effects of nonmetallic inclusions and corrosion pits
8.2.2.3 Prediction of scatter in fatigue strength using the statistics of extreme
8.3 Mechanism of creation of residual stress by shot peeing: a typical misconception and reality
8.3.1 Materials and method of experiment
8.3.1.1 Drop shot of a steel ball
8.3.2 Residual stress by a single shot
8.3.3 Superposition of residual stresses by the second shot
8.3.4 Residual stresses by multiple shots
8.3.5 Rotating-bending fatigue test of a specimen after a single shot
References
9 Tool steels: effect of carbides
9.1 Low-temperature forging and microstructure
9.2 Static strength and fatigue strength
9.3 Relationship between carbide size and fatigue strength
References
10 Effects of shape and size of artificially introduced alumina particles on 1.5Ni–Cr–Mo (En24) steel
10.1 Artificially introduced alumina particles with controlled sizes and shapes, specimens and test stress
10.2 Rotating bending fatigue tests without shot peening
10.3 Rotating bending fatigue tests on shot-peened specimens
10.4 Tension compression fatigue tests
References
11 Nodular cast iron and powder metal
11.1 Introduction
11.2 Fatigue strength prediction of nodular cast irons by considering graphite nodules to be equivalent to small defects
11.3 Parameters to be considered for fatigue limit predictions
11.3.1 Nature of fatigue limit of NCI
11.3.2 Fatigue limit prediction method for NCI specimens containing small defects
11.3.3 Prediction of the fatigue limit of smooth specimens and the influence of microshrinkage cavities
11.4 Powder metal: effects of pores and microstructures
11.4.1 Materials and experimental procedures
11.4.2 Microstructure
11.4.3 Fatigue cracks
11.4.4 Effect of the size of Fe particles on fatigue strength
References
12 Influence of Si-phase on fatigue properties of aluminium alloys
12.1 Materials, specimens and experimental procedure
12.2 Fatigue mechanism
12.2.1 Continuously cast material
12.2.2 Extruded material
12.2.3 Fatigue behaviour of specimens containing an artificial hole
12.3 Mechanisms of ultralong fatigue life
12.4 Low-cycle fatigue
12.4.1 Fatigue mechanism
12.4.2 Continuously cast material
12.4.3 Extruded material
12.4.4 Comparison with high-cycle fatigue
12.4.5 Cyclic property characterisation
12.5 Summary
References
13 Ti alloys
13.1 General nature of fatigue fracture origin in Ti alloys
13.2 Very high cycle fatigue (VHCF) properties of Ti–6Al–4V alloy
13.3 Effects of notches and burrs on high cycle fatigue of Ti–6Al–4V
13.3.1 Introduction
13.3.2 Test specimen and experimental method for notch effect test
13.3.3 Fatigue limit and the area parameter model
13.3.4 Crack initiation and nonpropagating cracks
13.3.5 Effect of a burr beside a drilled hole
References
14 Torsional fatigue
14.1 Introduction
14.2 Effect of small artificial defects on torsional fatigue strength
14.2.1 Ratio of torsional fatigue strength to bending fatigue strength
14.2.2 The state of nonpropagating cracks at the torsional fatigue limit
14.2.3 Torsional fatigue of high carbon Cr bearing steel
14.3 Effects of small cracks
14.3.1 Material and test procedures
14.3.2 Fatigue test results
14.3.3 Crack initiation and propagation from precracks
14.3.4 Fracture mechanics evaluation of the effect of small cracks on torsional fatigue
14.3.5 Prediction of torsional fatigue limit by the area parameter model
References
15 The mechanism of fatigue failure in the very high cycle fatigue (VHCF) life regime of N>107 cycles
15.1 Mechanism of elimination of conventional fatigue limit: influence of hydrogen trapped by inclusions
15.1.1 Method of data analysis
15.1.2 Material, specimens and experimental method
15.1.3 Distribution of residual stress and hardness
15.1.4 Fracture origins
15.1.5 S–N curves
15.1.6 Details of fracture surface morphology and influence of hydrogen
15.2 Fractographic investigation
15.2.1 Measurement of surface roughness
15.2.2 The outer border of a fish eye
15.2.3 Crack growth rate and fatigue life
15.3 Conclusions when the first edition of this book was published
15.4 Mechanism of very high cycle fatigue (VHCF) and fatigue design
15.4.1 Mechanics of small cracks and VHCF
15.4.2 Interpretation of VHCF data and mechanism of elimination of fatigue threshold
15.4.2.1 Effect of fatigue testing method and specimen size on VHCF strength
15.4.2.2 Nature of VHCF: effect of hydrogen trapped by nonmetallic inclusions
15.4.3 Mechanism of fatigue failure originating at nonmetallic inclusions and fatigue life prediction models
15.4.3.1 Models and the role of fatigue design engineers: how can we predict the fatigue strength and fatigue life for VHCF?
15.4.3.2 Fracture surface morphology
15.4.3.3 Master curve of the growth of ODA
15.4.3.4 Mechanism-inside-ODAs
15.4.3.5 Dependence of threshold stress intensity of an ODA (small crack) on crack size and the mechanism-outside-an ODA
15.4.4 Fatigue life prediction model
15.4.4.1 Fatigue life prediction model based on the mechanism-inside-the ODA
15.4.4.2 Fatigue crack growth law based on the mechanism-outside the-ODA
15.4.5 Applications to fatigue life prediction
15.4.6 Summary and perspectives
15.5 Statistical nature of VHCF failure at facets
References
16 Effect of surface roughness on fatigue strength
16.1 Introduction
16.2 Material and experimental procedure
16.2.1 Material
16.2.2 Introduction of artificial surface roughness and of a single notch
16.2.3 Measurement of hardness and surface roughness
16.3 Results and discussion
16.3.1 Results of fatigue tests
16.3.2 Quantitative evaluation by the area parameter model
16.3.2.1 Geometrical parameter to evaluate the effect of surface roughness on fatigue strength
16.3.2.2 Evaluation of equivalent defect size for roughness areaR
16.4 Guidance for fatigue design engineers
16.5 Effect of surface scratch in torsional fatigue of spring steel
16.5.1 Experiment
16.5.2 Fatigue strength of smooth specimens
16.5.3 Effects of scratches on the fatigue strength
References
17 Martensitic stainless steels
17.1 Materials and experimental procedure
17.2 Influence of inherent defects on the fatigue strength
17.2.1 Fatigue tests on smooth specimens with failure from nonmetallic inclusion
17.2.2 Estimation of the lower bound of the fatigue limit using the statistics of extremes
17.3 Influence of various types of small defects on the fatigue strength
17.3.1 Test results on precipitation hardened 17-4PH stainless steel
17.3.2 Test results on martensitic 12% Cr stainless steel X20Cr13
17.3.3 Test results for martensitic 12% Cr stainless steel AISI403
17.4 Effect of mean stress
17.4.1 Quantitative evaluation of the mean stress effect for 17-4PH steel
17.4.2 Quantitative evaluation of the mean stress effect of AISI403 steel
References
18 Additive manufacturing: effects of defects
18.1 Ti–6Al–4V
18.2 Tests, results and discussion for Ti–6Al–4V
18.3 Nickel-based superalloy 718
18.4 Tests, results and discussion for nickel-based superalloy 718
18.5 Summary and perspectives
18.5.1 Defects
18.5.2 Goal to ideal fatigue strength
18.5.3 Standardisation of defect size
18.5.4 Surface effect
18.5.5 Quality control of AM components
References
Appendix A: High probability of fatigue fracture from surface defects due to difference of stress intensity factor for surfa…
19 Fatigue threshold in Mode II and Mode III, ΔKIIth and ΔKIIIth, and small crack problems
19.1 Method of measurement for ΔKIIth
19.1.1 Basic model
19.1.2 Experimental method
19.2 Results and discussion
19.2.1 Variation of electric potential
19.2.2 Fracture surfaces
19.2.3 Relationship between da/dN and ΔKII
19.2.4 The values of ΔKIIth for various steels
19.3 Fatigue crack growth mechanism under Mode III loadings: measurement of ΔKIIIth
19.3.1 Material and test method for Mode III fatigue crack growth
19.3.2 Fatigue crack growth mechanism under Mode III loading
19.3.2.1 Relationship between the threshold stress intensity factor ranges under Mode II (ΔKIIth) and Mode III (ΔKIIIth) lo…
19.3.3 Crack path and mechanism of factory-roof formation under Mode III loading
19.4 Mutual relationship of ΔKIth, ΔKIIth and ΔKIIIth and mechanism of factory-roof morphology: summary
19.5 Mode II threshold stress intensity factors ΔKIIth and ΔKIIIth for small cracks: crack size dependence
19.5.1 Test method for investigating shear-mode fatigue crack threshold in hard steels
19.5.2 Effect of crack-face interference on ΔKIIth
19.5.3 Crack size dependence for ΔKIIth
19.5.4 Approximate expression of stress intensity factor for shear-mode crack by means of area
19.5.5 Estimation of the threshold SIF ranges, ΔKτth by means of the area parameter model
19.5.6 The influence of static crack-opening stress on the threshold SIF for shear-mode fatigue crack growth
19.6 Effect of crack branching on fatigue life and the reason for unsuccessful results of Miner’s rule in mixed-mode fatigue
19.6.1 Experimental procedure
19.6.2 Reversed torsion and combined push–pull/torsion fatigue tests
19.6.2.1 Sequential-fatigue tests
19.6.2.2 Crack path under reversed torsion and combined push–pull/torsion
19.6.2.3 Effects of loading sequence on fatigue crack paths
19.6.2.3.1 Cumulative fatigue damage
19.6.2.3.2 Crack path in sequential-fatigue tests
19.6.2.3.3 Crack propagation curves and fracture mechanics evaluation
19.6.2.3.4 Fractography
References
20 Contact fatigue
20.1 Nature of rolling contact fatigue
20.2 Experimental and fracture mechanics study of the pit formation mechanism under repeated lubricated rolling–sliding con…
20.2.1 Experimental method
20.2.2 Experimental results
20.2.3 Fracture mechanics analysis
20.3 Role of inclusions, surface roughness and operating conditions on rolling contact fatigue
20.4 Examples of contact fatigue failures and their interpretation from the viewpoint of the rolling contact fatigue experiment
20.4.1 Dark-spot defects in railway rails
20.4.2 Fracture originating from subsurface nonmetallic inclusions in railway rails
20.4.3 Spalling of steel making backup rolls
20.4.4 Spalling of steel making work roll
20.5 Rolling contact fatigue strength of bearing steel analysed as small crack problems
References
21 Hydrogen embrittlement
21.1 Effect of hydrogen on loss of ductility in tensile tests
21.2 Effects of hydrogen charge on the formation of cyclic slip bands in fatigue of annealed carbon steels
21.2.1 Materials, specimens and experimental methods
21.2.2 Effects of hydrogen on slip band morphology and crack initiation near the fatigue limit stress
21.3 Effects of hydrogen charge on the mechanism of fatigue crack growth of low-strength steels
21.3.1 Fatigue crack growth behaviour of a pipeline steel
21.4 Effect of hydrogen on fatigue behaviour of a Cr–Mo steel SCM435
21.5 Effect of hydrogen on fatigue behaviour of austenitic stainless steels
21.5.1 Basic parameters: hydrogen content, diffusion coefficient, fatigue crack growth and test frequency
21.5.2 What happens if nondiffusible hydrogen is removed by a special heat treatment?
21.5.3 Hydrogen-induced striation formation mechanism
21.5.4 Case study: dispenser hose fatigue failure at a hydrogen station
21.5.5 Hydrogen effect against hydrogen embrittlement
21.6 Hydrogen embrittlement of other materials
21.6.1 High-strength steels
21.6.2 Aluminium alloys
References
22 A new nonmetallic inclusion rating method by the positive use of the hydrogen embrittlement phenomenon
22.1 Introduction
22.2 Materials and experimental methods
22.2.1 Materials and specimens
22.2.2 Hydrogen-precharged method (H-precharged method)
22.2.3 Nonmetallic inclusion rating by tensile testing with hydrogen-precharged specimen: HE method
22.2.4 Nonmetallic inclusion rating by fatigue testing
22.2.5 Nonmetallic inclusion rating methods using an optical microscope
22.2.6 Size measurement and identification of inclusions
22.3 Results and discussion
22.3.1 Inclusion rating by the hydrogen embrittlement method
22.3.1.1 Case I: SAE52100 steel
22.3.1.2 Case II: ASTM-A485-1 Steel
22.3.1.3 Case III: SAE5160 steel
22.3.1.4 Mechanism of crack initiation from inclusions for uncharged specimens and H-precharged specimens
22.3.2 Inclusion rating method by fatigue test using SAE52100 steel
22.3.3 Inclusion rating method by optical microscopy
22.3.4 Inclusion inspection method in the case of bilinear statistics of extremes
22.4 Summary and perspective
22.4.1 Summary
22.4.2 Perspective
References
23 What is fatigue damage? A viewpoint from the observation of a low-cycle fatigue process
23.1 Introduction
23.2 Fatigue damage in low-cycle fatigue and the behaviour of small cracks
23.2.1 Material and test procedure
23.2.2 Experimental results and discussion
23.2.2.1 Fatigue failure lives of plain and holed specimens
23.2.2.2 Crack growth life of plain and holed specimens
23.2.2.3 Relationship between the microcrack growth law and the Coffin–Manson expression
23.2.2.4 Effect of prior cyclic stress or strain history on subsequent crack growth rate
23.2.2.5 The applicability of the Palmgren–Miner cumulative damage rule
23.3 Ductility loss during the fatigue process
23.3.1 Effects of small surface cracks on ductility loss during low-cycle fatigue
23.3.2 Material and test procedure
23.3.3 Results and discussion
23.3.3.1 Changes in mechanical properties due to reversals of plastic strain
23.3.3.2 The main cause of ductility loss due to plastic strain cycling
23.3.3.3 Morphology of the tensile fracture surface
23.4 Experimental conclusions
23.5 Summary in terms of the correlation among fatigue damage, small cracks, Coffin–Manson law and ductility loss
References
24 Quality control of mass production components based on defect analysis
24.1 Introduction
24.2 The importance of prediction of the extreme value based on the statistics of extremes
24.3 Prevention method for recalls
24.3.1 How to find the cause of failure and the method of statistics extremes analysis
24.3.2 Statistics of extremes data of defects as failure cause and its applications to fatigue design
24.3.3 Practical applications to design and quality control based on the statistics of extremes
24.3.3.1 Example 1: Fatigue design of Al cast components
24.3.3.2 Example 2: Applications to the scroll compressor components for car air conditioners
24.3.3.3 Example 3: Very high cycle fatigue strength design of traction drive half toroidal continuously variable transmission
24.3.3.4 Example 4: Case study of engine valve spring
24.4 Basic concept and guide for the application of the statistics of extremes method
24.4.1 What is the appropriate parameter?
24.4.2 Reconsideration of the stress–strength model
24.4.3 Applications to large-scale but a small number of production machinery
24.5 Conclusions
References
Appendix: Definition of the control volume as the potential risk volume under high applied stress
Appendix A: Instructions for a new method of inclusion rating and correlations with the fatigue limit
A.1 Background of extreme value theory and data analysis
A.2 Simple procedure for extreme value inclusion rating
A.3 Prediction of the maximum inclusion
A.4 Prediction of areamax of inclusions expected to be contained in a volume
A.5 Method for estimating the prediction volume (or control volume)
A.5.1 Plate bending
A.5.2 Rotating bending loading
A.5.3 Tension–compression loading
A.6 Prediction of the lower limit (lower bound) of the fatigue strength
A.7 The comparison of predicted lower bound of the scatter in fatigue strength of a medium carbon steel with rotating bendi…
A.7.1 Construction of a graph of the statistics of extremes
A.7.2 Prediction of the lower bound of the scatter in fatigue strength
A.8 Optimisation of extreme value inclusion rating
A.9 Recent developments in statistical analysis and its perspectives
References
Appendix B: Database of statistics of extreme values of inclusion size areamax
Appendix C: Probability sheets of statistics of extremes
Index
Back Cover

دکمه بازگشت به بالا