دانلود کتاب Ductile Design of Steel Structures, Third Edition 3rd Edition

خرید ایبوک Ductile Design of Steel Structures Third Edition EBook Original PDF

برای دانلود ایبوک Ductile Design of Steel Structures, Third Edition 3rd Edition و خرید کتاب طراحی شکل پذیر سازه های فولادی، ویرایش سوم (سال 2026) – کتاب الکترونیکی – نسخه اصلی PDF بر روی کلید خرید در انتهای صفحه کلیک کنید. پس از اتصال به درگاه پرداخت هزینه و تکمیل مراحل خرید، لینک دانلود کتاب ایمیل می شود.این ایبوک در فرمت Original PDF و به زبان انگلیسی ارسال می شود.نسخه الکترونیکی کتاب قابلیت کپی برداری copy و Paste دارد.

در صورتی که نیاز به پی دی اف هر کتابی از انتشارات ‎ McGraw Hillدارید با گیگاپیپر مکاتبه کنید.

خرید کتاب Ductile Design of Steel Structures, Third Edition – E-Book – Original PDF

Ductile Design of Steel Structures 3rd Edition

by Michel Bruneau (Author), Chia-Ming Uang (Author), Rafael Sabelli (Author)

Publisher ‏ : ‎‎ McGraw Hill

Publication date ‏ : ‎ ‎ ‎ February 17, 2026

Edition ‏ : ‎ 3rd

Language ‏ : ‎ English

Print length ‏ : ‎ ‎ 1024 pages

ISBN-10 ‏ : ‎ 1266013407

ISBN-13 ‏ : ‎ 978-1266013409

Send email to download :ایمیل گیگاپیپر دانلود کتاب مقاله پایان نامه

Price : 35$

https://www.amazon.com/dp/1266013407

https://www.amazon.com/Ductile-Design-Steel-Structures-Third/dp/1266013407

دانلود رایگان کتاب Ductile Design of Steel Structures 3rd Edition

برای اطمینان از کیفیت ایبوک طراحی شکل پذیر سازه های فولادی، ویرایش سوم (ویرایش سوم) – کتاب الکترونیکی – نسخه اصلی PDF چند صفحه از این کتاب در ادامه اورده شده است.

A completely revised and updated in-depth guide to the requirements central to earthquake-resistant design of steel structures

Ductile Design of Steel Structures, Third Edition has been thoroughly updated to address the extensive advancements made in the industry over the past decade. The book covers steel material, cross-section, component, and system response for applications in plastic and seismic design and provides practical guidance on how to incorporate these principles into structural design.

You’ll find essential coverage of new structural systems like composite steel plate and concrete-filled walls, as well as new ductile connections for special moment resisting frames, and modifications in the design requirements for other structural systems.

This third edition is filled with new and updated content, including:

• Essential information on concrete-filled composite steel plate walls (SpeedCore)
• A significantly expanded chapter on buckling restrained braced frames
• Updated knowledge recently implemented in the AISC seismic provisions that has simplified the design of steel plate shear walls
• Design examples that comply with requirements in the 2022 AISC provisions
• New information on load-path in floor/roof diaphragms, from the inertia force sources to the lateral force resisting systems, and general information on diaphragm design
• Information on new structural systems being proposed, such as friction devices, scorpion-braces, and more

Written by experts in earthquake-resistant design who are active in the development of seismic guidelines, this is an invaluable resource for practicing engineers and graduate students in structural engineering.

دانلود ایبوک طراحی شکل پذیر سازه های فولادی، ویرایش سوم (ویرایش سوم) – کتاب الکترونیکی – نسخه اصلی PDF

یک راهنمای عمیق کاملاً اصلاح‌شده و به‌روز شده در مورد الزامات اصلی طراحی مقاوم در برابر زلزله سازه‌های فولادی

کتاب «طراحی شکل‌پذیر سازه‌های فولادی، ویرایش سوم» به‌طور کامل به‌روزرسانی شده است تا پیشرفت‌های گسترده انجام‌شده در صنعت در طول دهه گذشته را پوشش دهد. این کتاب، مواد فولادی، سطح مقطع، اجزا و پاسخ سیستم را برای کاربردهای طراحی پلاستیک و لرزه‌ای پوشش می‌دهد و راهنمایی‌های عملی در مورد چگونگی گنجاندن این اصول در طراحی سازه ارائه می‌دهد.

در این کتاب، پوشش ضروری از سیستم‌های سازه‌ای جدید مانند صفحات فولادی کامپوزیت و دیوارهای پرشده با بتن، و همچنین اتصالات شکل‌پذیر جدید برای قاب‌های خمشی ویژه و اصلاحات در الزامات طراحی برای سایر سیستم‌های سازه‌ای را خواهید یافت.

این کتاب، پوشش کاملی از سیستم‌های سازه‌ای جدید مانند صفحات فولادی کامپوزیت و دیوارهای پرشده با بتن را ارائه می‌دهد. این ویرایش سوم مملو از مطالب جدید و به‌روز شده است، از جمله:

  • اطلاعات ضروری در مورد دیوارهای صفحه‌ای فولادی کامپوزیت پر شده با بتن (SpeedCore)
  • فصلی به‌طور قابل توجهی گسترش‌یافته در مورد قاب‌های مهاربندی‌شده مقاوم در برابر کمانش
  • دانش به‌روز شده‌ای که اخیراً در ضوابط لرزه‌ای AISC پیاده‌سازی شده و طراحی دیوارهای برشی صفحه‌ای فولادی را ساده کرده است
  • نمونه‌های طراحی که با الزامات ضوابط AISC 2022 مطابقت دارند
  • اطلاعات جدید در مورد مسیر بار در دیافراگم‌های کف/سقف، از منابع نیروی اینرسی گرفته تا سیستم‌های مقاوم در برابر نیروی جانبی، و اطلاعات کلی در مورد طراحی دیافراگم
  • اطلاعات در مورد سیستم‌های سازه‌ای جدید پیشنهادی، مانند دستگاه‌های اصطکاکی، مهاربندهای عقربی و موارد دیگر

این کتاب که توسط متخصصان طراحی مقاوم در برابر زلزله که در تدوین دستورالعمل‌های لرزه‌ای فعال هستند، نوشته شده است، منبعی ارزشمند برای مهندسان شاغل و دانشجویان تحصیلات تکمیلی در مهندسی سازه است.

فهرست مطالب Ductile Design of Steel Structures 3rd Edition

Preface………………………………………………….xv
1Introduction……………………………………………..1
References……………………………………………….5
2Structural Steel…………………………………………..7
2.1Introduction……………………………………….7 2.2Common Properties of Steel Materials……………………7 2.2.1Engineering Stress-Strain Curve…………………..7 2.2.2Effect of Temperature on Stress-Strain Curve………..10
2.2.3Effect of Temperature on Ductility andNotch-Toughness……………………………..14
2.2.4Strain Rate Effect on Tensile and Yield Strengths……..23 2.2.5Probable Yield Strength………………………..23 2.3Plasticity, Hysteresis, Bauschinger Effects………………..26 2.4Metallurgical Process of Yielding, Slip Planes…………….28 2.5Brittleness in Welded Sections…………………………31
2.5.1Metallurgical Transformations During Welding,Heat-Affected Zone, Preheating………………….31
2.5.2Hydrogen Embrittlement……………………….32 2.5.3Carbon Equivalent…………………………….32 2.5.4Flame Cutting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 2.5.5Weld Restraints………………………………36 2.5.6Lamellar Tearing……………………………..39 2.5.7Thick Steel Sections……………………………42 2.5.8Fracture Mechanics……………………………43 2.5.9Partial Penetration Welds……………………….44 2.5.10K-Area Fractures……………………………..45 2.5.11Strain Aging…………………………………48 2.5.12Stress Corrosion………………………………48 2.5.13Corrosion Fatigue…………………………….51 2.5.14Ductility of Corroded Steel……………………..53 2.6Low-CycleVersus High-Cycle Fatigue………………….54 2.6.1High-Cycle Fatigue……………………………54 2.6.2Low-Cycle Fatigue……………………………55 2.7Material Models……………………………………61 2.7.1Rigid Plastic Model……………………………61 2.7.2Elasto-Plastic Models………………………….62
2.7.3Power, Ramberg-Osgood, andMenegotto-Pinto Functions……………………..63
2.7.4Smooth Hysteretic Models………………………69
v

2.8Advantages of Plastic Material Behavior…………………82
2.9Self-Study Problems………………………………..86
References………………………………………………90
3Plastic Behavior at the Cross-Section Level……………………99
3.1Pure Flexural Yielding………………………………993.1.1Doubly Symmetric Sections…………………….1003.1.2Sections Having a Single Axis of Symmetry………..104
3.1.3Impact of Some Factors on InelasticFlexural Behavior…………………………….106
3.1.4Behavior During Cyclic Loading…………………112 3.2Combined Flexural and Axial Loading…………………114 3.2.1Rectangular Cross-Section……………………..117 3.2.2Wide-Flange Sections: Strong-Axis Bending………..117 3.2.3Wide-Flange Sections: Weak-Axis Bending…………121 3.2.4Moment-Curvature Relationships………………..121 3.3Combined Flexural and Shear Loading…………………122 3.4Combined Flexural, Axial, and Shear Loading……………126 3.5Pure Plastic Torsion: Sand-Heap Analogy……………….129 3.5.1Review of Important Elastic Analysis Results……….129 3.5.2Sand-Heap Analogy…………………………..130 3.6Combined Flexure and Torsion……………………….131 3.7Biaxial Flexure……………………………………133 3.7.1General Principles……………………………133 3.7.2Fiber Models………………………………..140 3.8Composite Sections………………………………..140 3.8.1Flexure…………………………………….140 3.8.2Shear……………………………………..145 3.9Axial Elongation/Shortening Under Cyclic Loading………150 3.10Self-Study Problems……………………………….152 References……………………………………………..161
4Concepts of Plastic Analysis……………………………….163
4.1Introduction to Simple Plastic Analysis…………………163
4.2Simple Plastic Analysis Methods……………………..165
4.2.1Event-to-Event Calculation (Step-by-Step Method)…..166
4.2.2Equilibrium Method (Statical Method)……………168
4.2.3Kinematic Method (Virtual-Work Method)…………173
4.3Theorems of Simple Plastic Analysis…………………..176
4.3.1Upper Bound Theorem………………………..177
4.3.2Lower Bound Theorem………………………..178
4.3.3Uniqueness Theorem………………………….178
4.4Application of the Kinematic Method………………….178
4.4.1Basic Mechanism Types……………………….179
4.4.2Combined Mechanism………………………..180
4.4.3Mechanism Analysis by Center of Rotation…………185
4.4.4Distributed Loads……………………………190

4.5Shakedown Theorem (Deflection Stability)………………197
4.6Yield Lines………………………………………202
4.6.1General Framework………………………….202
4.6.2Strength of Connections……………………….209
4.6.3Plastic Mechanisms of Local Buckling…………….218
4.7Self-Study Problems……………………………….220
References……………………………………………..229
5Systematic Methods of Plastic Analysis……………………..231
5.1Number of Basic Mechanisms………………………..231
5.2Direct Combination of Mechanisms……………………235
5.2.1Example: One-Bay, One-Story Frame……………..235
5.2.2Example: Two-Story Frame with Overhanging Bay…..237
5.3Method of Inequalities……………………………..240
5.4Self-Study Problems……………………………….246
References……………………………………………..252
6Applications of Plastic Analysis……………………………253
6.1Moment Redistribution Design Methods……………….254 6.1.1Statical Method of Design……………………..254 6.1.2Autostress Design Method……………………..256 6.2Capacity Design…………………………………..258 6.2.1Concepts…………………………………..258 6.2.2Shear Failure Protection……………………….260 6.2.3Protection Against Column Hinging……………..262 6.3Push-Over Analysis………………………………..263 6.3.1Monotonic Push-Over Analysis…………………265 6.3.2Cyclic Push-Over Analysis……………………..270 6.4Seismic Design Using Plastic Analysis………………….271 6.5Global versus Local Ductility Demands………………..272 6.5.1Displacement Ductility Versus Curvature Ductility…..272
6.5.2Ductility of Yielding Link for StructuralElement in Series…………………………….275
6.6Displacement Compatibility of Nonductile Systems……….277 6.7Self-Study Problems……………………………….278 References……………………………………………..281
7Building Code Seismic Design Philosophy……………………283
7.1Introduction……………………………………..283
7.2Need for Ductility in Seismic Design…………………..283
7.2.1Elastic Response and Response Spectrum………….284
7.2.2Inelastic Response and Ductility Reduction………..285
7.3Collapse Mechanism Versus Yield Mechanism……………289
7.4Design Earthquake………………………………..289
7.5Equivalent Lateral Force Procedure……………………291
7.6Physical Meaning of Seismic Performance Factors………..293
7.7Capacity Design…………………………………..295

.7.1Global-Level Approach………………………296 7.7.2Local-Level Approach……………………….298 7.8Performance-Based Seismic Design Framework………….299 7.8.1Seismic Performance Objective…………………299 7.8.2USA: ASCE 7………………………………301 7.8.3Canada: NBCC…………………………….301 7.8.4Japan: BSL…………………………………303
7.8.5Seismic Design of Tall Buildings andPerformance-Based Design……………………305
7.9Historical Perspective of Seismic Codes………………..307 7.10Seismic Resilience………………………………..312 7.10.1Definition of Resilience………………………312 7.10.2Impact of the 2011 Christchurch Earthquake………314 7.11Diaphragm, Chords, and Collectors…………………..315 References……………………………………………..319
8Design of Ductile Moment-Resisting Frames…………………325
8.1Introduction……………………………………..3258.1.1Historical Developments……………………..3268.1.2General Behavior and Plastic Mechanism………..3268.1.3Design Philosophy………………………….327
8.2Basic Response of Ductile Moment-ResistingFrames to Lateral Loads…………………………….327
8.2.1Internal Forces During Seismic Response…………327 8.2.2Plastic Rotation Demands…………………….329 8.2.3Lateral Bracing and Local Buckling……………..330 8.3Ductile Moment-Frame Column Design………………..331 8.3.1Axial Forces in Columns……………………..331 8.3.2Column Splices…………………………….331 8.3.3Strong Column-Weak Beam Philosophy………….334 8.3.4Effect of Axial Forces on Column Ductility………..335 8.4Continuity Plates………………………………….337
8.4.1Flange Distortion and Column WebYielding/Crippling Prevention………………..338
8.5Panel Zone………………………………………343 8.5.1Forces on Panel Zones……………………….343 8.5.2Behavior of Panel Zones………………………346 8.5.3Modeling of Panel Zone Behavior………………346 8.5.4Design of Panel Zone…………………………353 8.5.5Revised Panel Zone Deformation Capacity………..355 8.5.6Revised Panel Zone Strength…………………..358 8.6Beam-to-Column Connections……………………….361
8.6.1Knowledge and Practice Prior to the 1994
Northridge Earthquake………………………362
8.6.2Damage During the Northridge Earthquake………374 8.6.3Causes for Failures………………………….381 8.6.4Reexamination of Pre-Northridge Practice………..391

8.6.5Post-Northridge Beam-to-Column ConnectionsDesign Strategies for New Buildings—InitialConcepts…………………………………..393
8.6.6Post-Northridge Beam-to-ColumnPrequalified Connections………………………405
8.6.7International Relevance………………………426
8.6.8Semi-Rigid (Partially Restrained)Bolted Connections………………………….430
8.7Design of a Ductile Moment Frame……………………436 8.7.1General Connection Design Issues………………436 8.7.2Welding and Quality Control Issues…………….437 8.7.3Generic Design Procedure…………………….437 8.8P-∆ Stability of Moment Resisting Frames………………443 8.8.1Fundamental Concept and Parameters…………..443 8.8.2Impact on Hysteretic Behavior…………………445 8.8.3Design Requirements…………………………447 8.9Design Example…………………………………..448 8.9.1Building Description and Loading………………448 8.9.2Global Requirements………………………..451 8.9.3Basis of Design……………………………..452 8.9.4Preliminary Design………………………….452 8.9.5Iterative Design and Proportioning………………456 8.9.6Member Checks…………………………….456 8.9.7WUF-W Connection Design……………………458 8.9.8Detailing………………………………….467 8.9.9Bracing…………………………………..467 8.9.10Completion of Design………………………..470 8.9.11Alternative Connection Design: RBS…………….470 8.10Self-Study Problems………………………………..475 References……………………………………………..478
9Design of Ductile Concentrically Braced Frames………………489
9.1Introduction………………………………………489 9.1.1Historical Developments……………………..489 9.1.2General Behavior and Plastic Mechanism…………491 9.1.3Design Philosophy………………………….493 9.2Hysteretic Behavior of Single Braces. . . . . . . . . . . . . . . . . . . . . . . . .495 9.2.1Brace Physical Inelastic Cyclic Behavior………….495 9.2.2Brace Slenderness…………………………..497
9.2.3Compression Strength Degradation of BraceUnder Repeated Loading……………………..502
9.2.4Brace Compression Overstrength at First Buckling….509
9.2.5Evolution of Codified Strength andSlenderness Limits………………………….510
9.2.6Local Buckling……………………………..510 9.2.7Low-Cycle Fatigue Models……………………516 9.2.8Models of Single Brace Behavior……………….521

9.3Hysteretic Behavior and Design of ConcentricallyBraced Frames…………………………………….521
9.3.1System Configuration and General Issues………..521 9.3.2Brace Design……………………………….527 9.3.3Two Scenarios of Capacity Design in SCBF………..531 9.3.4Capacity Design of Beams…………………….531 9.3.5Column Design…………………………….537 9.3.6Connection Design………………………….540 9.3.7Other Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .546 9.4Other Concentric Braced Frame Systems………………..547 9.4.1Special Truss Moment Frames (STMF)……………547 9.4.2Zipper Frames……………………………..548 9.5Multi-Tier Braced Frames…………………………….550 9.6Continuous Columns, Spines, and Strongbacks……………558 9.7Design Example……………………………………561 9.7.1Building Description and Loading………………561 9.7.2Global Requirements………………………..565 9.7.3Basis of Design……………………………..565 9.7.4Preliminary Brace Sizing……………………..567 9.7.5Plastic Mechanism Analysis…………………..568 9.7.6Capacity Design of Beam……………………..570 9.7.7Capacity Design of Column……………………573 9.7.8Iterative Analysis and Proportioning…………….575 9.7.9Connection Design………………………….575 9.7.10Completion of Design………………………..575
9.7.11Additional Consideration: Gravity Bias inSeismic Systems……………………………575
9.8Self-Study Problems………………………………..579 References……………………………………………..584
10Design of Ductile Eccentrically Braced Frames…………………595
10.1Introduction………………………………………595 10.1.1Historical Development………………………595 10.1.2General Behavior and Plastic Mechanism…………596 10.1.3Design Philosophy………………………….596 10.2Link Behavior…………………………………….598 10.2.1Stiffened and Unstiffened Links………………..598 10.2.2Critical Length for Shear Yielding………………599
10.2.3Classifications of Links and LinkDeformation Capacity……………………….600
10.2.4Link Transverse Stiffener……………………..601 10.2.5Effect of Axial Force…………………………604 10.2.6Effect of Concrete Slab……………………….604 10.2.7Link Overstrength…………………………..605 10.2.8Qualification Test and Loading Protocol Effect…….606

10.3EBF Lateral Stiffness and Strength……………………..606
10.3.1Elastic Stiffness…………………………….606
10.3.2Link Required Rotation………………………608
10.3.3Plastic Analysis and Ultimate Frame Strength……..608
10.4Ductility Design…………………………………..610
10.4.1Sizing of Links……………………………..610
10.4.2Link Detailing……………………………..611
10.4.3Lateral Bracing of Link……………………….615
10.5Capacity Design of Other Structural Components…………615
10.5.1General…………………………………..615
10.5.2Internal Force Distribution……………………617
10.5.3Diagonal Braces…………………………….618
10.5.4Beams Outside of Link……………………….619
10.5.5Columns………………………………….620
10.5.6Connections……………………………….620
10.6Alternative Link Concepts……………………………626
10.7Design Example……………………………………629
10.7.1Building Description and Loading………………629
10.7.2Global Requirements………………………..631
10.7.3Basis of Design…………………………….632
10.7.4Sizing of Links……………………………..633
10.7.5Plastic Mechanism Analysis…………………..635
10.7.6Capacity Design of Brace……………………..638
10.7.7Capacity Design of Column…………………..639
10.7.8Capacity Design of Beam……………………..640
10.7.9Final Member Sizes and Link Evaluation…………644
10.7.10Link Rotation………………………………646
10.7.11Link Detailing……………………………..649
10.7.12Completion of Design……………………….650
10.8Self-Study Problems………………………………..651
References……………………………………………..654
11Design of Ductile Buckling-Restrained Braced Frames………….659
11.1Introduction………………………………………659
11.2Buckling-Restrained Braced Frames VersusConventional Frames………………………………..659
11.3Concept and Components of Buckling-Restrained Brace…….661 11.4Development of BRBs……………………………….663 11.5Nonductile Failure Modes……………………………669 11.5.1Steel Casing……………………………….669 11.5.2Brace Connection……………………………670 11.5.3Frame Distortion Effect on Gusset Connection……..675 11.6BRBF Configuration………………………………..676 11.7Design of Buckling-Restrained Braces…………………..677 11.7.1Brace Design………………………………677 11.7.2Elastic Modeling……………………………678 11.7.3Gravity Loads……………………………..678

11.8Capacity Design of BRBF…………………………..680
11.8.1AISC Testing Requirements……………………680
11.8.2Brace Casing……………………………….682
11.8.3Brace Connections…………………………..682
11.8.4Beams and Columns…………………………682
11.9Nonlinear Modeling………………………………682
11.10Design Example…………………………………683
11.10.1Building Description and Loading………………683
11.10.2Global Requirements…………………………686
11.10.3Basis of Design……………………………..686
11.10.4Preliminary Design of Braces…………………..688
11.10.5Plastic Mechanism Analysis…………………..689
11.10.6Capacity Design of Column…………………..691
11.10.7Capacity Design of Beam……………………..692
11.10.8Brace Validation and Testing…………………..695
11.10.9Completion of Design………………………..696
11.11Self-Study Problem………………………………697
References……………………………………………..697
12Design of Ductile Steel Plate Shear Walls…………………….701
12.1Introduction………………………………………701 12.1.1General Concepts…………………………..701 12.1.2Historical Developments……………………..703 12.1.3International Implementations…………………712 12.2Behavior of Steel Plate Shear Walls……………………..717 12.2.1General Behavior……………………………717 12.2.2Plastic Mechanism………………………….721
12.2.3Design Philosophy and HystereticEnergy Dissipation………………………….724
12.3Analysis and Modeling……………………………..725 12.3.1Strip Models……………………………….725 12.3.2Finite Element Models……………………….731 12.3.3Demands on HBEs…………………………..732 12.3.4Demands on VBEs…………………………..743 12.4Design…………………………………………..748 12.4.1Introduction……………………………….748 12.4.2Web Plate Design…………………………..749 12.4.3HBE Design……………………………….753 12.4.4VBE Design………………………………..761
12.4.5Distribution of Lateral Force betweenFrame and Infill…………………………….764
12.4.6Connection Details………………………….765 12.4.7Design of Openings…………………………767 12.4.8Alternative Configurations……………………769

12.5Perforated Steel Plate Shear Walls……………………..76912.5.1Special Perforated Steel Plate Shear Walls………..769
12.5.2Steel Plate Shear Walls with ReinforcedCorners Cutouts…………………………….774
12.6Design Example…………………………………..777 12.6.1Building Description and Loading………………777 12.6.2Global Requirements………………………..779 12.6.3Basis of Design……………………………..781 12.6.4Web Design……………………………….781 12.6.5HBE Design……………………………….782 12.6.6VBE Design……………………………….787 12.6.7Frame Check………………………………789 12.6.8Drift……………………………………..790 12.6.9HBE Connection Design……………………..791 12.6.10Completion of Design……………………….791 12.7Self-Study Problems………………………………..791 References……………………………………………..793
13Composite Plate Shear Walls/Concrete Filled………………….801
13.1Introduction………………………………………801
13.1.1Concept…………………………………..801
13.1.2Historical Development………………………803
13.2In-plane Flexural Hysteretic Response………………….808
13.3Spacing of Tie Bars…………………………………827
13.4Coupled C-PSW/CF………………………………..828
13.5Shear Strength…………………………………….834
13.6Design of Tie Bars………………………………….839
13.6.1Construction Loads………………………….839
13.6.2Tie Forces During In-plane Flexural Response……..843
13.7Capacity Design at Foundation………………………..851
13.8Resilience………………………………………..852
13.9Design Example…………………………………..854
13.9.1Building Description and Loading………………855
13.9.2Global Requirements………………………..857
13.9.3Basis of Design……………………………..858
13.9.4Web Design………………………………..858
13.9.5Flexural Strength Check……………………..859
13.9.6Shear Strength Check………………………..861
13.9.7Drift……………………………………..862
13.9.8Required Strength of Connection to Foundation……863
13.9.9Completion of Design………………………..863
References……………………………………………..864

14Other Ductile Steel Energy Dissipating Systems………………871
14.1Structural Fuse Concept……………………………..871
14.2Energy Dissipation Through Steel Yielding………………874
14.2.1Early Concepts……………………………..874
14.2.2Triangular Plates in Flexure……………………874
14.2.3Tapered Shapes…………………………….884
14.2.4C-Shaped and E-Shaped Devices……………….885
14.2.5Other Configurations and Devices………………887
14.3Energy Dissipation Through Friction……………………891
14.4Rocking Systems…………………………………..904
14.5Self-Centering Systems with Post-Tensioned Members……..909
14.5.1Post-Tensioned Beams……………………….909
14.5.2Post-Tensioned Braces……………………….911
14.6Alternative Metallic Materials…………………………916
14.6.1Extrusion Damper…………………………..916
14.6.2Shape Memory Alloys and Other Metals………….918
References……………………………………………..918
15Stability and Rotation Capacity of Steel Flexural Members………933
15.1Introduction………………………………………933 15.2Plate Elastic and Postelastic Buckling Behavior……………936 15.3General Description of Beam Inelastic Behavior…………..940 15.3.1Beams with Uniform Bending Moment…………..940 15.3.2Beams with Moment Gradient…………………941
15.3.3Comparison of Beam Behavior underUniform Moment and Moment Gradient…………944
15.4Inelastic Flange Local Buckling………………………..94415.4.1Modeling Assumptions……………………….94415.4.2Buckling of an Orthotropic Plate……………….946
15.4.3Torsional Buckling of a RestrainedRectangular Plate…………………………..947
15.5Web Local Buckling………………………………..952 15.6Inelastic Lateral-Torsional Buckling……………………955 15.6.1General……………………………………955 15.6.2Beam Under Uniform Moment…………………956 15.6.3Beam Under Moment Gradient………………..960 15.7Code Comparison………………………………….965 15.8Interaction of Beam Buckling Modes……………………967 15.9Cyclic Beam Buckling Behavior……………………….972 15.10Column Cyclic Buckling Behavior and Design……………977 15.10.1Past Research………………………………977
15.10.2Historical Development of Seismic LocalBuckling Requirement………………………..979
15.11Self-Study Problem…………………………………984References……………………………………………..984
Index…………………………………………………987

دکمه بازگشت به بالا